跳跃表

3/29/2022 数据结构跳跃表

# 引言

  1. 跳表 (Skip List) 是由 William Pugh 发明的一种查找数据结构,支持对数据的快速查找,插入和删除。
  2. 跳表的期望空间复杂度为$O(n)$,跳表的查询,插入和删除操作的期望时间复杂度都为$O(logn)$。

img

# 基本思想

顾名思义,跳表是一种类似于链表的数据结构。更加准确地说,跳表是对有序链表的改进。

为方便讨论,后续所有有序链表默认为 升序 排序。

一个有序链表的查找操作,就是从头部开始逐个比较,直到当前节点的值大于或者等于目标节点的值。很明显,这个操作的复杂度是$O(n)$。 跳表在有序链表的基础上,引入了 分层 的概念。首先,跳表的每一层都是一个有序链表,特别地,最底层是初始的有序链表。每个位于第i层的节点有$p$的概率出现在第i+1层,$p$为常数。

记在 n 个节点的跳表中,期望包含$\frac{1}{p}$个元素的层为第$L(n)$层,易得$L(n) = log_{\frac{1}{p}}n$。

在跳表中查找,就是从第$L(n)$层开始,水平地逐个比较直至当前节点的下一个节点大于等于目标节点,然后移动至下一层。重复这个过程直至到达第一层且无法继续进行操作。此时,若下一个节点是目标节点,则成功查找;反之,则元素不存在。这样一来,查找的过程中会跳过一些没有必要的比较,所以相比于有序链表的查询,跳表的查询更快。可以证明,跳表查询的平均复杂度为$O(logn)$。

# 复杂度证明

# 空间复杂度

img

# 时间复杂度

img

# 具体实现

# 获取节点的最大层数

模拟以p的概率往上加一层,最后和上限值取最小。p的意义就是上一层的节点个数是下一层的1/p的概率。每一层都以这种规则来设置上一层的节点个数。

int randomLevel() {
  int lv = 1;
  // MAXL = 32, S = 0xFFFF, PS = S * P, P = 1 / 4
  while ((rand() & S) < PS) ++lv;
  return min(MAXL, lv);
}

# 查询

查询跳表中是否存在键值为 key 的节点。具体实现时,可以设置两个哨兵节点以减少边界条件的讨论。

V& find(const K& key) {
  SkipListNode<K, V>* p = head;

  // 找到该层最后一个键值小于 key 的节点,然后走向下一层
  for (int i = level; i >= 0; --i) {
    while (p->forward[i]->key < key) {
      p = p->forward[i];
    }
  }
  // 现在是小于,所以还需要再往后走一步
  p = p->forward[0];

  // 成功找到节点
  if (p->key == key) return p->value;

  // 节点不存在,返回 INVALID
  return tail->value;
}

# 插入

插入节点 (key, value)。插入节点的过程就是先执行一遍查询的过程,中途记录新节点是要插入哪一些节点的后面,最后再执行插入。每一层最后一个键值小于 key 的节点,就是需要进行修改的节点。

void insert(const K &key, const V &value) {
  // 用于记录需要修改的节点
  SkipListNode<K, V> *update[MAXL + 1];

  SkipListNode<K, V> *p = head;
  for (int i = level; i >= 0; --i) {
    while (p->forward[i]->key < key) {
      p = p->forward[i];
    }
    // 第 i 层需要修改的节点为 p
    update[i] = p;
  }
  p = p->forward[0];

  // 若已存在则修改
  if (p->key == key) {
    p->value = value;
    return;
  }

  // 获取新节点的最大层数
  int lv = randomLevel();
  if (lv > level) {
    lv = ++level;
    update[lv] = head;
  }

  // 新建节点
  SkipListNode<K, V> *newNode = new SkipListNode<K, V>(key, value, lv);
  // 在第 0~lv 层插入新节点
  for (int i = lv; i >= 0; --i) {
    p = update[i];
    newNode->forward[i] = p->forward[i];
    p->forward[i] = newNode;
  }

  ++length;
}

# 删除

删除键值为 key 的节点。删除节点的过程就是先执行一遍查询的过程,中途记录要删的节点是在哪一些节点的后面,最后再执行删除。每一层最后一个键值小于 key 的节点,就是需要进行修改的节点。

bool erase(const K &key) {
  // 用于记录需要修改的节点
  SkipListNode<K, V> *update[MAXL + 1];

  SkipListNode<K, V> *p = head;
  for (int i = level; i >= 0; --i) {
    while (p->forward[i]->key < key) {
      p = p->forward[i];
    }
    // 第 i 层需要修改的节点为 p
    update[i] = p;
  }
  p = p->forward[0];

  // 节点不存在
  if (p->key != key) return false;

  // 从最底层开始删除
  for (int i = 0; i <= level; ++i) {
    // 如果这层没有 p 删除就完成了
    if (update[i]->forward[i] != p) {
      break;
    }
    // 断开 p 的连接
    update[i]->forward[i] = p->forward[i];
  }

  // 回收空间
  delete p;

  // 删除节点可能导致最大层数减少
  while (level > 0 && head->forward[level] == tail) --level;

  // 跳表长度
  --length;
  return true;
}

# 完整代码

下列代码是用跳表实现的 map。未经正经测试,仅供参考。

#include <bits/stdc++.h>
using namespace std;

template <typename K, typename V>
struct SkipListNode {
  int level;
  K key;
  V value;
  SkipListNode **forward;

  SkipListNode() {}

  SkipListNode(K k, V v, int l, SkipListNode *nxt = NULL) {
    key = k;
    value = v;
    level = l;
    forward = new SkipListNode *[l + 1];
    for (int i = 0; i <= l; ++i) forward[i] = nxt;
  }

  ~SkipListNode() {
    if (forward != NULL) delete[] forward;
  }
};

template <typename K, typename V>
struct SkipList {
  static const int MAXL = 32;
  static const int P = 4;
  static const int S = 0xFFFF;
  static const int PS = S / P;
  static const int INVALID = INT_MAX;

  SkipListNode<K, V> *head, *tail;
  int length;
  int level;

  SkipList() {
    srand(time(0));

    level = length = 0;
    tail = new SkipListNode<K, V>(INVALID, 0, 0);
    head = new SkipListNode<K, V>(INVALID, 0, MAXL, tail);
  }

  ~SkipList() {
    delete head;
    delete tail;
  }

  int randomLevel() {
    int lv = 1;
    while ((rand() & S) < PS) ++lv;
    return min(MAXL, lv);
  }

  void insert(const K &key, const V &value) {
    SkipListNode<K, V> *update[MAXL + 1];

    SkipListNode<K, V> *p = head;
    for (int i = level; i >= 0; --i) {
      while (p->forward[i]->key < key) {
        p = p->forward[i];
      }
      update[i] = p;
    }
    p = p->forward[0];

    if (p->key == key) {
      p->value = value;
      return;
    }

    int lv = randomLevel();
    if (lv > level) {
      lv = ++level;
      update[lv] = head;
    }

    SkipListNode<K, V> *newNode = new SkipListNode<K, V>(key, value, lv);
    for (int i = lv; i >= 0; --i) {
      p = update[i];
      newNode->forward[i] = p->forward[i];
      p->forward[i] = newNode;
    }

    ++length;
  }

  bool erase(const K &key) {
    SkipListNode<K, V> *update[MAXL + 1];
    SkipListNode<K, V> *p = head;

    for (int i = level; i >= 0; --i) {
      while (p->forward[i]->key < key) {
        p = p->forward[i];
      }
      update[i] = p;
    }
    p = p->forward[0];

    if (p->key != key) return false;

    for (int i = 0; i <= level; ++i) {
      if (update[i]->forward[i] != p) {
        break;
      }
      update[i]->forward[i] = p->forward[i];
    }

    delete p;

    while (level > 0 && head->forward[level] == tail) --level;
    --length;
    return true;
  }

  V &operator[](const K &key) {
    V v = find(key);
    if (v == tail->value) insert(key, 0);
    return find(key);
  }

  V &find(const K &key) {
    SkipListNode<K, V> *p = head;
    for (int i = level; i >= 0; --i) {
      while (p->forward[i]->key < key) {
        p = p->forward[i];
      }
    }
    p = p->forward[0];
    if (p->key == key) return p->value;
    return tail->value;
  }

  bool count(const K &key) { return find(key) != tail->value; }
};

int main() {
  SkipList<int, int> L;
  map<int, int> M;

  clock_t s = clock();

  for (int i = 0; i < 1e5; ++i) {
    int key = rand(), value = rand();
    L[key] = value;
    M[key] = value;
  }

  for (int i = 0; i < 1e5; ++i) {
    int key = rand();
    if (i & 1) {
      L.erase(key);
      M.erase(key);
    } else {
      int r1 = L.count(key) ? L[key] : 0;
      int r2 = M.count(key) ? M[key] : 0;
      assert(r1 == r2);
    }
  }

  clock_t e = clock();
  cout << "Time elapsed: " << (double)(e - s) / CLOCKS_PER_SEC << endl;
  // about 0.2s

  return 0;
}

# 跳表的随机访问优化

访问跳表中第k个节点,相当于访问初始有序链表中的第k个节点,很明显这个操作的时间复杂度是O(n)的,并不足够优秀。

跳表的随机访问优化就是对每一个前向指针,再多维护这个前向指针的长度。假设 A和 B都是跳表中的节点,其中A为跳表的第a个节点,B为跳表的第b个节点 ,且在跳表的某一层中A的前向指针指向B,那么这个前向指针的长度为b-a。

现在访问跳表中的第k个节点,就可以从顶层开始,水平地遍历该层的链表,直到当前节点的位置加上当前节点在该层的前向指针长度大于等于k,然后移动至下一层。重复这个过程直至到达第一层且无法继续行操作。此时,当前节点就是跳表中第k个节点。

这样,就可以快速地访问到跳表的第k个元素。可以证明,这个操作的时间复杂度为O(logn)。

# 参考资料

  1. Skip Lists: A Probabilistic Alternative to Balanced Trees (opens new window)
  2. Skip List (opens new window)
  3. A Skip List Cookbook (opens new window)
Last Updated: 3/28/2022, 10:32:38 PM