volatile
# volatile作用
# 防止重排序
public class Singleton {
public static volatile Singleton singleton;
/
* 构造函数私有,禁止外部实例化
*/
private Singleton() {};
public static Singleton getInstance() {
if (singleton == null) {
synchronized (singleton.class) {
if (singleton == null) {
singleton = new Singleton();
}
}
}
return singleton;
}
}
现在我们分析一下为什么要在变量singleton之间加上volatile关键字。要理解这个问题,先要了解对象的构造过程,实例化一个对象其实可以分为三个步骤:
分配内存空间。
初始化对象。
将内存空间的地址赋值给对应的引用。
但是由于操作系统可以对指令进行重排序,所以上面的过程也可能会变成如下过程:
分配内存空间。
将内存空间的地址赋值给对应的引用。
初始化对象
如果是这个流程,多线程环境下就可能将一个未初始化的对象引用暴露出来,从而导致不可预料的结果。因此,为了防止这个过程的重排序,我们需要将变量设置为volatile类型的变量
# 实现可见性
public class VolatileTest {
int a = 1;
int b = 2;
public void change(){
a = 3;
b = a;
}
public void print(){
System.out.println("b="+b+";a="+a);
}
public static void main(String[] args) {
while (true){
final VolatileTest test = new VolatileTest();
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
test.change();
}
}).start();
new Thread(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
test.print();
}
}).start();
}
}
}
直观上说,这段代码的结果只可能有两种:b=3;a=3 或 b=2;a=1。不过运行上面的代码(可能时间上要长一点),你会发现除了上两种结果之外,还出现了第三种结果:
......
b=2;a=1
b=2;a=1
b=3;a=3
b=3;a=3
b=3;a=1 // 这里
b=3;a=3
b=2;a=1
b=3;a=3
b=3;a=3
......
为什么会出现b=3;a=1这种结果呢? 正常情况下,如果先执行change方法,再执行print方法,输出结果应该为b=3;a=3。相反,如果先执行的print方法,再执行change方法,结果应该是 b=2;a=1。那b=3;a=1的结果是怎么出来的? 原因就是第一个线程将值a=3修改后,但是对第二个线程是不可见的,所以才出现这一结果。如果将a和b都改成volatile类型的变量再执行,则再也不会出现b=3;a=1的结果了。
# 保证原子性:单次读/写
volatile不能保证完全的原子性,只能保证单次的读/写操作具有原子性。
# volatile实现原理
# volatile可见性保证
volatile 变量的内存可见性是基于内存屏障(Memory Barrier)实现:
内存屏障,又称内存栅栏,是一个 CPU 指令。
在程序运行时,为了提高执行性能,编译器和处理器会对指令进行重排序,JMM 为了保证在不同的编译器和 CPU 上有相同的结果,通过插入特定类型的内存屏障来禁止+ 特定类型的编译器重排序和处理器重排序,插入一条内存屏障会告诉编译器和 CPU:不管什么指令都不能和这条 Memory Barrier 指令重排序。
加入 volatile 关键字时,会多出一个 lock 前缀指令 。lock 前缀指令实际上相当于一个内存屏障 (也成内存栅栏),内存屏障会提供 3 个功能:
它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面; 即在执行到内存屏障这句指令时,在它前面的操作已经全部完成 ;
它会强制将对缓存的修改操作立即写入主存;
如果是写操作,它会导致其他 CPU 中对应的缓存行无效。
如果对声明了 volatile 的变量进行写操作, JVM 就会向处理器发送一条 lock 前缀的指令,将这个变量所在缓存行的数据写回到系统内存 。
为了保证各个处理器的缓存是一致的,实现了缓存一致性协议(MESI), 每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态 ,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。
所有多核处理器下还会完成: 当处理器发现本地缓存失效后,就会从内存中重读该变量数据,即可以获取当前最新值 。volatile 变量通过这样的机制就使得每个线程都能获得该变量的最新值。
# lock指令
在 Pentium 和早期的 IA-32 处理器中,lock 前缀会使处理器执行当前指令时产生一个 LOCK# 信号,会对总线进行锁定,其它 CPU 对内存的读写请求都会被阻塞,直到锁释放。 后来的处理器,加锁操作是由高速缓存锁代替总线锁来处理。 因为锁总线的开销比较大,锁总线期间其他 CPU 没法访问内存。 这种场景多缓存的数据一致通过缓存一致性协议(MESI)来保证。
# 缓存一致性
缓存是分段(line)的,一个段对应一块存储空间,称之为缓存行,它是 CPU 缓存中可分配的最小存储单元,大小 32 字节、64 字节、128 字节不等,这与 CPU 架构有关,通常来说是 64 字节。 LOCK# 因为锁总线效率太低,因此使用了多组缓存。 为了使其行为看起来如同一组缓存那样。因而设计了 缓存一致性协议。 缓存一致性协议有多种,但是日常处理的大多数计算机设备都属于 " 嗅探(snooping)" 协议 。 所有内存的传输都发生在一条共享的总线上,而所有的处理器都能看到这条总线。 缓存本身是独立的,但是内存是共享资源,所有的内存访问都要经过仲裁(同一个指令周期中,只有一个 CPU 缓存可以读写内存)。 CPU 缓存不仅仅在做内存传输的时候才与总线打交道,而是不停在嗅探总线上发生的数据交换,跟踪其他缓存在做什么。 当一个缓存代表它所属的处理器去读写内存时,其它处理器都会得到通知,它们以此来使自己的缓存保持同步。 只要某个处理器写内存,其它处理器马上知道这块内存在它们的缓存段中已经失效。
# volatile有序性保证
# volatile的happens-before关系
- happens-before 规则中有一条是 volatile 变量规则:对一个 volatile 域的写,happens-before 于任意后续对这个 volatile 域的读。
//假设线程A执行writer方法,线程B执行reader方法
class VolatileExample {
int a = 0;
volatile boolean flag = false;
public void writer() {
a = 1; // 1 线程A修改共享变量
flag = true; // 2 线程A写volatile变量
}
public void reader() {
if (flag) { // 3 线程B读同一个volatile变量
int i = a; // 4 线程B读共享变量
……
}
}
}
根据 happens-before 规则,上面过程会建立 3 类 happens-before 关系。
根据程序次序规则:1 happens-before 2 且 3 happens-before 4。
根据 volatile 规则:2 happens-before 3。
根据 happens-before 的传递性规则:1 happens-before 4。
因为以上规则,当线程 A 将 volatile 变量 flag 更改为 true 后,线程 B 能够迅速感知。
# volatile禁止重排序
Java 编译器会在生成指令系列时在适当的位置会插入内存屏障指令来禁止特定类型的处理器重排序。
JMM 会针对编译器制定 volatile 重排序规则表。
先简单了解两个指令:
Store:将处理器缓存的数据刷新到内存中。
Load:将内存存储的数据拷贝到处理器的缓存中。
为了实现 volatile 内存语义时,编译器在生成字节码时,会在指令序列中插入内存屏障来禁止特定类型的处理器重排序。对于编译器来说,发现一个最优布置来最小化插入屏障的总数几乎是不可能的,为此,JMM 采取了保守的策略。
在每个 volatile 写操作的前面插入一个 StoreStore 屏障。
在每个 volatile 写操作的后面插入一个 StoreLoad 屏障。
在每个 volatile 读操作的后面插入一个 LoadLoad 屏障。
在每个 volatile 读操作的后面插入一个 LoadStore 屏障。
volatile 写是在前面和后面分别插入内存屏障,而 volatile 读操作是在后面插入两个内存屏障。
内存屏障 | 说明 |
---|---|
StoreStore 屏障 | 禁止上面的普通写和下面的 volatile 写重排序。 |
StoreLoad 屏障 | 防止上面的 volatile 写与下面可能有的 volatile 读/写重排序。 |
LoadLoad 屏障 | 禁止下面所有的普通读操作和上面的 volatile 读重排序。 |
LoadStore 屏障 | 禁止下面所有的普通写操作和上面的 volatile 读重排序。 |
# x86架构的内存屏障
x86架构并没有实现全部的内存屏障。
# Store Barrier
sfence指令实现了Store Barrier,相当于StoreStore Barriers。
强制所有在sfence指令之前的store指令,都在该sfence指令执行之前被执行,发送缓存失效信号,并把store buffer中的数据刷出到CPU的L1 Cache中;所有在sfence指令之后的store指令,都在该sfence指令执行之后被执行。即,禁止对sfence指令前后store指令的重排序跨越sfence指令,使 所有Store Barrier之前发生的内存更新都是可见的 。
这里的“可见”,指 修改值可见 (内存可见性)且 操作结果可见 (禁用重排序)。下同。
内存屏障的标准中,讨论的是缓存与内存间的相干性,实际上,同样适用于寄存器与缓存、甚至寄存器与内存间等多级缓存之间。x86架构使用了MESI协议的一个变种,由协议保证三层缓存与内存间的相关性,则内存屏障只需要保证store buffer(可以认为是寄存器与L1 Cache间的一层缓存)与L1 Cache间的相干性。下同。
# Load Barrier
lfence指令实现了Load Barrier,相当于LoadLoad Barriers。
强制所有在lfence指令之后的load指令,都在该lfence指令执行之后被执行,并且一直等到load buffer被该CPU读完才能执行之后的load指令(发现缓存失效后发起的刷入)。即,禁止对lfence指令前后load指令的重排序跨越lfence指令,配合Store Barrier,使 所有Store Barrier之前发生的内存更新,对Load Barrier之后的load操作都是可见的 。
# Full Barrier
mfence指令实现了Full Barrier, 相当于StoreLoad Barriers 。
mfence指令综合了sfence指令与lfence指令的作用,强制所有在mfence指令之前的store/load指令,都在该mfence指令执行之前被执行;所有在mfence指令之后的store/load指令,都在该mfence指令执行之后被执行。即,禁止对mfence指令前后store/load指令的重排序跨越mfence指令,使所有Full Barrier之前发生的操作,对所有Full Barrier之后的操作都是可见的。
# volatile如何解决内存可见性与处理器重排序问题
在编译器层面,仅将volatile作为标记使用,取消编译层面的缓存和重排序。
如果硬件架构本身已经保证了内存可见性(如单核处理器、一致性足够的内存模型等),那么volatile就是一个空标记,不会插入相关语义的内存屏障。
如果硬件架构本身不进行处理器重排序、有更强的重排序语义(能够分析多核间的数据依赖)、或在单核处理器上重排序,那么volatile就是一个空标记,不会插入相关语义的内存屏障。
如果不保证,仍以x86架构为例,JVM对volatile变量的处理如下:
在写volatile变量v之后,插入一个sfence。这样,sfence之前的所有store(包括写v)不会被重排序到sfence之后,sfence之后的所有store不会被重排序到sfence之前,禁用跨sfence的store重排序;且sfence之前修改的值都会被写回缓存,并标记其他CPU中的缓存失效。
在读volatile变量v之前,插入一个lfence。这样,lfence之后的load(包括读v)不会被重排序到lfence之前,lfence之前的load不会被重排序到lfence之后,禁用跨lfence的load重排序;且lfence之后,会首先刷新无效缓存,从而得到最新的修改值,与sfence配合保证内存可见性。
在另外一些平台上,JVM使用mfence代替sfence与lfence,实现更强的语义。
二者结合,共同实现了Happens-Before关系中的volatile变量规则 。